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G R O U P  C L A S S I F I C A T I O N  

OF E Q U A T I O N S  OF  M O T I O N  O F  A G A S  

IN A C O N S T A N T  F O R C E  F I E L D  

S. V.  M e l e s h k o  UDC 517.944 + 519.46 

A group classification is proposed for a set of equations describing ideal gas flows in a constant force 
field. This gas motion is denoted by solutions which are invariant with respect to the operator X4 + X10 [1]. 
The algebraic approach employed is based on the recently developed analysis [1]. 

1. F a c t o r - S y s t e m .  Solutions of the equation of gas dynamics are considered which are invariant for 
the X = X4 + X10 = cOt + tcO, + cO~ operator from the optimal system [1]. The invariants of this operator are 

xl  = x - t 2 / 2 ,  y, z, u - t ,  v, w, p, p, 

where t is the time; (x, y, z) are the spatial coordinates; (u, v, w) are the rate; p is the density; p is the gas 
pressure. The invariant solution has the representation 

11 = t + V ( z l ,  y ,  z ) ,  u -~ Y ( x l ,  y ,  z ) ,  w = W(zl, y,  z ) ,  p : p ( x l ,  y ,  z ) ,  p = p(zl, y, z), 

and the factor-system 

d l v + p - l V l p = ( - 1 , O , O ) ,  d l p + p d i v l v = O ,  dip + A(p, p) divlv = O, (1.1) 

where v = (U, V, W); dl = UCOx, + VOy + WOz; V1 = (Ox,, cOy, cOz); divlv = Uxx + Vy + VII,. 
The above title is used because the factor-system (1.1) coincides with the system (describing steady- 

state gas flows in a constant field of mass forces) obtained in an axiomatic construction based on assumptions 
on the character of the gas motion and the external force field. In this case these equations arise as one of 
the invariant submodels of the conventional equations of gas dynamics. Nonstationary gas flows in a constant 
field of mass forces were studied in [2, 3]. In [2] one-dimensional nonstationary isoentropic flows were studied. 
In [3] the method of differential relations was used to construct the simple wave type solutions for the two- 
dimensional case. 

2. G r o u p  of  Equ iva l ences .  The group classification of system (1.1) is performed using a group of 
equivalences that transforms an arbitrary element A. The operators of equivalence transformations are sought 
in the form 

X e "7- ~XlcOz + ~YcOy -t- ~ZcOz + cUcOu + cV '~v  + cI~VoI4z + COcOp + CPcOp + cAcOA �9 (2.1) 1 

Unlike [4], in this case the operators (2.1) are determined assuming dependence on the arbitrary element A in 
all coordinates of the infinitesimal operator X *. Since A = A(p, p), operator (2.1) must satisfy the conditions 
of invariance of the system (1.1) supplemented by the equation 

A ,  1 = Av = Az = AU = A v  = A w  = O. (2.2) 
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Here, since the functions V(Xl, y, z), p(xl, y, z), p(xl,  y, z), and A(p,p) act in different spaces, the formulas of 
extension will be different. The coordinates of the extented operator 

" ~  = X e -~- ~U:Cl Ouxl  -~- cUY Ouy -~ (Uz  (~uz -~- . . . 

can be determined from the formula 

h D e cz ch~ = D ~ h  - h ~ l D ~ l  - h r D ~ r  - = ~ . 

(2.3) 

Here h takes on the values U, V, W, p, p; )~ = Xl, y, Z; the operator D~ = 0~, + UAOu + VAOv + WAOw + p~Op + 
p~Op + (Appx + AppA)OA. The coordinates of the extended operator (2.3) related to the arbitrary element due 
to (2.2) obey the formula 

~A~ = ~ r  _ Ap-~CR _ ApD~-~p (~ = z l ,  y, z, U, V, W,p,p),  

where D~ = 0h (A = Xl, y, z, U, V, W); Dp = Op + ApOA; Dp = Op + ApOA. As in the classical case [4], it can be 
assumed that the group of equivalence transformations, which is constructed in terms of operator (2.1) and 
admitted by Eqs. (1.1) and (2.2), transforms system (1.1) preserving its differential structure and changing 
only its arbitrary element A. The condition of the A-dependence of all coordinates of the infinitesimal operator 
(2.1) can, in the general case, extend the classical [4] group of equivalences. 

For system (1.1) the group of equivalences coincides with the classical one and arises from the operators 

2(x10~ +yOy+ZOz)+UOv+ VOv+ WOw-2pOp,  zO r - yOz+ WOv - -  VOw, pop + pOp+ AOA, Op, 0~: 1, O r, Oz. 

3. A d m i s s i b l e  G r o u p .  The operator admitted by system (1.1) can be represented in the form 

X = ~ 0 ~  + ~rO r + ~0= + cuou + CVOv + cwOw + r + CPOp. 1 

Calculations show that the integration of the determining equations reduces to the solution of the expressions 

OA OA 
(k~ - ~l)p~--p-p + (k~p + k~)-5~ ' = k~A, (3.1) 

where the constants kl, k2, k3, and k4 are related to the coordinates of the infinitesimal operator ~u = klxl +k2, 
~P = k3p + k4. The cores of the main Lie algebras are the operators 

X 1 =  0~,  X2 = O r, X3 = O~, X7 = zO r - yOz + WOV - VOw. 

The X1 operator is the core center. In this case the enumeration of operators is taken from [1]. The core of 
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the main Lie algebras is extended by specializing the A(p, p) function. The results of group classification are 
listed in Table 1, where 

Y~=pA'(p)o.+~(v)op,  v 2 = p o . + v o p ,  ~ = op, r4 = 2 ( ~ l o ~ , + y O ~ + z O z ) + v o ~  + r o y + w o w  - 2po. 

with the arbitrary A(p) function. 
Note that the normalizer factor-algebra of the operator X = )(4 + X10 in Lll [1] with regard to X 

[NOrLn (X) /X]  consists of operators (1,2, 3, 7) (hereafter only the operator numbers are given). 
The optimal subalgebra system consists of subalgebras given in Table 2. Hereafter the dimensionality 

subgroup with number (r, N) is denoted by r and N in Table 2. 
We now analyze the invariant solutions of system (1.1). 
4. I nva r i an t  So lu t ions .  The solutions, invariant with respect to one-dimensional subalgebras, are 

constructed on the subalgebras r = 1 of the optimal system (Table 2). 
The invariant solution of subalgebra (1,1) in the cylindrical system of coordinates (Xl,r,O) has the 

representation (x I = zx - aO): 

u = u (x ' ,  ~), v = v(~ ' ,  ~), w = w(x ' ,  ~), p = p(x', ~), p = p(x', ~). 

The factor-system can be written in the vector form 

0u 0u 
B-~x~+C--~r = f ,  (4.1) 

where u -- (Ul, u2 , . . . ,  us)' = (U - aW/r,  V, aU/r  -k W, p, p)'; f = - (1, - W 2 / r ,  a + u2u3; pV/r, AV/r)'; E5 is 
the unit matrix; B = ulE5 + B~ C = u2E5 + C ~ In the 8 ~ and C O matrices, only B~ = (1 + o~2/r2)/p, 
B~ = p, B~ = A, C~ = l /p,  C~ = p, C~ = A are nonzero. The characteristic equation det ( B - 1 C -  AEh) 
of system (4.1) is of the form 

( ~ u ,  - u2)2 (~2(p~}  - A(1  + ~2 /~2 ) )  _ 2 ~ p ~ , ~ 2  + p ~  - A)  = 0. 

For subalgebra (1,2) (Table 2) the independent variables are (x~ - a y ,  z), and the factor-system (x' = 
zl - ay) is 

au  cOU 
B~;z~ + Oz = _32f.  (4.2) 

In this case r = (1 + a2)-I/2;  u = (u l , u2 , . . . , uh ) '  = ( ~ ( U -  aV),  3(aU + Y), t3W, p,p)'; f = (1,a, 0,0,0)'; 
B = ul E5 + B ~ and C = uaE5 + C ~ with nonzero elements in matrices B ~ C ~ (B~ = I/p, B~ = p, B~ = A, 
CO5 = 32/p, C043 = p, CO3 = A). The characteristic equation of system (4.2) is 

( ~ 1  - ~3)2(A2(pu~ - A) - 2 A p ~ 3  + p ~  - Z2A) = 0. 

Finally, for (1,3) the factor-system is of the form 

~ 0 u  0u 
Oy + C ~ -  ~32f, 
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where u : (Ul, u 2 , . . .  , US)' : (U, V, W, p,p) ' ;  f = ( - 1 ,  0, 0, 0, 0)'; B = u 2 E h + B  ~ and C = u 3 E h + C  ~ with nonzero 
elements in the matrices B ~ C o (B~ = l / p ,  B~ = p, B~ = A, C~ = l /p ,  CO = p, C~ = A). In this case, 
the characteristics can readily be determined if it is taken into account tha t  for f = 0 and U = 0 this system 
coincides with plane s teady-s ta te  flows parallel to the plane x = 0. 

Solutions tha t  are invariant for the two-dimensional subalgebras are constructed on the subalgebras 02 
of the optimal system (Table 2). 

For subalgebra (2,1) the factor-system is a particular case (4.1) with a = 0, cgu/Oz' = 0. The solution 
is isoentropic and can be found from a set of two normal differential equations 

VU'  = - 1 ,  (V 2 - A/p)p '  = - p ( V  2 - W2)/r .  (4.3) 

In this case a prime denotes the r derivative; V = c2/(pr),  W = c l / r  with the arbi t rary constants cl, c2 
(c2 # 0). The quali tat ive behavior of the solutions of system (4.3) for a polytropic gas (7 = 1.4) is shown in 
Figs. 1 and 2. 

The invariant solution (2,2) and (2,3) is a particular solution for system (4.2) with a = 0 and 
independent invariant x' = x l  - flz. With  fl = 0 [subalgebra (2,3)] for one of the solutions U = 0, p(z'),  
V(x'), W ( x ' )  are arbi t rary  and p(x')  = - p ' ( x ' ) .  The other solution of this factor-system (for any fl) is 
isoentropic and can be de termined from a set of normal differential equations 

p3 
tip c 2 (4.4) 

~ - -  c(1 +f12),  ( p A -  )p ' - -  ( 1 + f l 2 )  , 

where W = s i n O . U + c o s O . W ;  U = c o s O . U - s i n O . W ;  tanO = f l ;  Up = c; V = O. In particular, for a 
polytropic gas (A = 7P = 7clP v) the general solution of Eqs. (4.4) is 

W= fl( + x' 
c 2p 2 + ( 7 - - 1 )  - - - - ( 1 + f l 2 ) '  

from which the invariant solution can be found. Figures 3 and 4 demonst ra te  the quali tat ive behavior of the 
curves x'(p) and W(p) .  

For the arbi t rary funct ion A(p ,p) ,  the invariant solution (2,4) holds with p = const and p = const. 
Other solutions can be obta ined only for a special type of function A(p, p), such as 

AAv  + pAp + A = O. 

5. F i n a l  R e m a r k s .  L. V. Ovsyannikov suggests considering the part ial ly invariant zero type solutions 
as the "source" of simple solutions (lecture). In gas dynamics for these solutions p = const, p = const. The 
dimensionality of the problem in such solutions can be decreased by integrat ing along the current lines. In a 
given submodel: 

dU dV  d W  dxl  dy dz 
ds 1, ds = O, ds = O, ds - U, ds V, ds W. (5.1) 
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Let, e.g., for s = 0, the initial conditions be given: 

z l  = o ,  y = y0 ,  z = z0 ,  U = Uo(yo,zo), v = Vo(yo,zo), w = Wo(yo, zo). ( 5 . 2 )  

Integrating (5.1) and (5.2) the following functions can be determined: 

U = - s + U o ( y o ,  zo), V = Y ( y o ,  zo), W = W ( y 0 ,  z0), z = - s 2 / 2 + s U o ,  y = y o + s V ,  z = z o + s W .  

In system (1.1) only the divlv = 0 equation, which in variables (s, y0, z0) is quadratic in s, is to be solved. 
Splitting it in s yields three equations for three unknown functions [U0(y0, z0), V(yo, zo), W(y0, z0)]: 

o v  o w  o v  o w  
- -  = o; (5.3) 

Oyo Ozo Ozo Oyo 

[vOUo OUo OVoOV w(OVo 2 ,OVoOV OUo] 
( v w ' -  w) t  - yo Ozo +  Ozo/ - u ~  b-fi 0 Tz0 + b%-z0J 

OV w,  OV) V OU~ W Ov~ (5.4) 
= v~ Tyo + Ozo =1+ - yo + " 

In (5.4) W' = dW/dV was used, where W = W(V) is the general solution of (5.3). Thus, the solution of 
system (1.1) reduces to the integration of nonlinear system (5.4) consisting of two first-order equations with 
two independent variables. An example of the solution of system (5.4) can be the case with W = cV, c = const 
(without loss of generality it is assumed that c = 0). Hence 

w = 0, v = V(z0) ,  Uo = - y o / y  + ~(zo). 

This work was accomplished within the framework of the SUBMODELS program [5]. The author is 
grateful to all participants of the program for their fruitful remarks during the preparation of this paper for 
publication. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 93-013-17326). 
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